Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2020, no. 3  /  MODELING THYRISTOR TRANSDUCERS IN MATLAB ENVIRONMENT TAKING INTO ACCOUNT THE PECULIARITIES OF THEIR IMPLEMENTATION

MODELING THYRISTOR TRANSDUCERS IN MATLAB ENVIRONMENT TAKING INTO ACCOUNT THE PECULIARITIES OF THEIR IMPLEMENTATION


Andrey P. Chervonenko, Denis A. Kotin

DOI: 10.47026/1810-1909-2020-3-150-165

Key words

electric drive, simulation of semiconductor rectifiers, thyristor transducer.

Annotation

The authors present the study of synthesis methods for simulating the models of semiconductor rectifiers. Simulation of semiconductor rectifiers is quite studied today, but many authors carry out synthesis in their own unique way. The need to apply high technologies in variable speed drives with the development of mechanisms and working machines is growing, the automated variable speed drive is being introduced increasingly, making the energy substrate for aggregates and working machines. The relevance of this work is explained by the fact that currently developing technologies make it possible to manufacture more advanced semiconductor elements. The more relevant and significant is the study of refined digital models of electric drives containing semiconductor converters. This paper will summarize known approaches to the development of rectifiers’ digital models, as well as it will offer the authors’ own vision of this issue – taking into account as many individual features of semiconductor elements and the entire electric drive system as a whole as possible. The option proposed for consideration differs in that when developing in Matlab environment the parameters of real existing power elements and their digital analogues are consistent. The article also examines the issue of creating a digital model of the electric drive reverse system including a thyristor transducer and an engine; the transition characteristics of the refined model are illustrated. The result of this study is the analysis of different approaches to modeling semiconductor converters in electric drive systems. In this regard, a refined approach to modeling semiconductor rectifiers was considered, consisting of maximizing approximation of the model structure to real implementation, taking into account all elements, included in the structure of the ventilated electric drive. The study suggests that the developed simulation models can be used for the design of a real power converter in the conditions of a production enterprise.

References

  1. Borisov P.A., Tomasov V.S. Raschet i modelirovanie vypryamitelei [Calculation and modeling of rectifiers. Manual for the course “Elements of automation systems”]. St. Petersburg, 2009, 169 p.
  2. Borisov P.A. Matematicheskoe modelirovanie elektroprivoda postoyannogo toka s aktivnym vypryamitelem [Mathematical modeling of a DC electric drive with an active rectifier]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo natsional’nogo issledovatel’skogo universiteta, 2009, no. 3(61), pp. 35–41.
  3. Borisov P.A. Raschet i modelirovanie rezhima periodicheskogo reversa skorosti s toko-ogranicheniem v elektroprivode postoyannogo toka s ship [Calculation and simulation of the periodic speed reversal mode with current limitation in a DC electric drive with a spike]. In: Konferentsiya AEP-2014 Nats. issl. mordovskii gos. un-t [Conference Automated electric drive 2014 National Research Mordovian State University]. Saransk, 2014, pp. 155–160.
  4. Borisov P.A. Modelirovanie sistemy upravleniya trekhfaznym aktivnym vypryamite-lem napryazheniya s preobrazovaniem koordinat [Simulation of a three-phase active voltage rectifier control system with coordinate transformation]. Izvestiya Tul’skogo gosudarstvennogo tekhni­ches­kogo universiteta, 2010, no. 3-2, pp. 59–64.
  5. German-Galkin S.G. Komp’yuternoe modelirovanie poluprovodnikovykh sistem v MATLAB 6.0 [Computer simulation of semiconductor systems in MATLAB 6.0]. Petersburg, Korona print Publ., 2001, 320 p.
  6. German-Galkin S.G. Virtual’nye laboratorii poluprovodnikovykh sistem v srede matlab-simulink [Virtual laboratories of semiconductor systems in the matlab-simulink environment]. Petersburg, Lan’ Publ., 2013, 448 p.
  7. German-Galkin S.G. Analiticheskoe i model’noe issledovanie aktivnogo poluprovodniko­vo­go preobrazovatelya v sistemakh elektroprivoda [Analytical and model study of an active semiconductor Converter in electric drive systems]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo natsional’­nogo issledovatel’skogo universiteta,2014, no. 3(91), pp. 131–139.
  8. German-Galkin S.G. Issledovanie aktivnogo vypryamitelya v pakete sim power system [Research of the active rectifier in the sim power system package]. Izvestiya vysshikh uchebnykh zavedenii Sankt-Peterburgskogo natsional’nogo issledovatel’skogo universiteta, 2004, vol. 47, no. 11, pp. 64–67.
  9. German-Galkin S.G. Model’noe issledovanie vtorichnogo istochnika pitaniya polupro-vodni­kovogo elektroprivoda s rekuperatsiei energii v set’ [Model study of a secondary power source of a semiconductor electric drive with energy recovery in the network]. Vestnik Ural’skogo gosudar­stvennogo universiteta putei soobshcheniya,2010, no. 4, pp. 11–16.
  10. German-Galkin S.G. Aktivnyi vypryamitel’ v tsepi elektropitaniya [Active rectifier in the power supply circuit]. Zhurnal Transport Urala, 2011, 4, pp. 91–95.
  11. Lur’e M.S., Lur’e O.M. Primenenie programmy MATLAB pri izuchenii kursa elektrotekhniki. Dlya studentov vsekh spetsial’nostei i form obucheniya [Application of the MATLAB program in the course of electrical engineering. For students of all majors and forms of study]. Krasnoyarsk, 2006, 208 p.
  12. Lur’e M.S., Lur’e O.M. Elektrotekhnika. Nelineinye i nesinusoidal’nye tsepi, perekhodnye pro­tsessy v lineinykh tsepyakh [Nonlinear and non-sinusoidal circuits, transients in linear circuits]. Krasnoyarsk, 2011, 124 p.
  13. Lur’e M.S., Lur’e O.M., Vais A.A. Elektrotekhnika. Dlya studentov vsekh spetsial’nostei i form obucheniya [Electrical engineering. For students of all specialties and forms of education]. Krasnoyarsk, 2005, 131 p.
  14. Pankratov V.V. Avtomaticheskoe upravlenie elektroprivodami: ucheb. posobie. Chast’ I. Regulirovanie koordinat elektro-privodov postoyannogo toka [Automatic control of electric drives: tutorial. Part I. Regulation of coordinates of DC electric drives]. Novosibirsk, Novosibirsk State Technical University Publ., 2013, 200 p.
  15. Suptel’ A.A. Modelirovanie sistem upravleniya elektroprivodami [Modeling of electric drive control systems]. Cheboksary, Chuvash State University Publ., 2010, 197 p.
  16. Tomasov V.S. Metodika vybora sposoba ispol’zovaniya energii rekuperatsii v sistemakh elektroprivoda postoyannogo toka s ship [Method of selecting a method for using recovery energy in DC electric drive systems with a spike]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo natsio­nal’nogo issledovatel’skogo universiteta, 2005, no. 20, pp. 85–90.
  17. Tomasov V.S. Analiz elektromagnitnykh protsessov pri vklyuchenii aktivnykh vypryami-telei napryazheniya v pitayushchuyu set’ [Analysis of electromagnetic processes when switching on active voltage rectifiers in the supply network]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo natsional’nogo issledovatel’skogo universiteta, 2003, no. 10, pp. 218–222.
  18. Tomasov V.S. Sovershenstvovanie energeticheskikh pokazatelei energopodsistem elektro­tekh­nicheskikh kompleksov i sistem s poluprovodnikovymi preobrazovatelyami [Improving energy performance of power subsystems electrical complexes and systems with semiconductor converters]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo natsional’nogo issledovatel’skogo universiteta, 2006, no. 30, pp. 19–26.

Download the full article