Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2020, no. 3  /  EVALUATION OF THE ERROR EFFECT IN SYNCHRONOUS VECTOR MEASUREMENTS OF ANGLES AT VOLTAGES ON ASSESSING THE DUTY PARAMETERS OF ELECTRIC POWER SYSTEMS

EVALUATION OF THE ERROR EFFECT IN SYNCHRONOUS VECTOR MEASUREMENTS OF ANGLES AT VOLTAGES ON ASSESSING THE DUTY PARAMETERS OF ELECTRIC POWER SYSTEMS


Natalia L. Batseva, Julia A. Foos, Aleksey V. Pankratov

DOI: 10.47026/1810-1909-2020-3-24-45

Key words

electric power system, state assessment, telemeasurements, system of monitoring transient states, synchronous vector measurements, angles at voltages.

Annotation

Telemeasurements and telesignals coming from telemechanics devices to the operational information complex are used as the initial data for solving the problem of state assessment. The disadvantage of telemeasurement chopping is that they do not contain angles at voltages that are necessary for assessing the mode parameters in solving a number of technological problems. Implementing the Transitional Modes Monitoring System has provided opportunities to improve solving the problem of state assessing by the data of synchronous vector measurements coming from synchronous vector measurement devices. However, failures on the satellite channel of synchronous vector measurement devices, as well as high load of communication networks result in errors in the arrays of synchronous vector measurements. The question of accuracy in solving the problem of state assessing at the influence of errors in synchronous vector measurements of angles at voltages on the mode parameters is not fully studied and is at the stage of research. State assessment is done using algorithms based on mathematical methods. The existing algorithms do not make it possible to take into account synchronized vector measurements of angles at voltages and require modification. The article presents a modified algorithm developed on the basis of the Gauss– Newton method, making it possible to use telemeasurements and synchronized vector measurements together, to evaluate the impact errors in synchronized vector measurements of angles at voltages on assessing the mode parameters, to determine allowable error intervals according to conditions of ensuring correct estimation mode parameters, to make the conclusion on advisability to use synchronized vector dimensions of angles in solving the problem of state assessing. The algorithm is tested using computational experiments when evaluating such mode parameters as active and reactive load power, voltage module, power flows. On the basis of studies, the error intervals of angles have been revealed, beyond which taking into account the angles at voltages will contribute to improving the accuracy of state estimation. The parameters of the mode that are the most sensory to the increase of errors in synchronized vector measurements of angles are determined.

References

  1. Vtorushin A.S., Grunin O.M., Petrov A.E. Otsenivanie sostoyaniya energosistem v zada­chakh protivoavariinoi avtomatiki [State estimation of power system in the tasks of emergency automation]. Izvestiya NTTs Edinoi energeticheskoi sistemy, 2013, no.1(68), pp. 99–104.
  2. Vtorushin A.S., Shipilov V.K. Ispol’zovanie sinkhronizirovannykh vektornykh izmerenii v otsenivanii sostoyaniya elektroenergeticheskikh sistem [Using synchronized phasor measurements in state estimation of electrical power system]. In: Elektroenergetika glazami molodezhi: materialy IX Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Proc of 9th Conf. «Power engineering as seen by the youths»]. Kazan, Kazan State Energy University Publ., 2018, vol. 1, pp. 213–216.
  3. Gamm A.Z. Statisticheskie metody otsenivaniya sostoyaniya elektroenergeticheskikh system [Statistical methods for state estimation of electrical power system]. Moscow, Nauka Publ., 1976, 220 p.
  4. Glazunova A.M., Aksaeva E.S., S”emshchikov E.S. Vyrabotka upravlyayushchikh vozdeistvii s pomoshch’yu iskusstvennykh neironnykh setei i modifitsirovannogo otsenivaniya sostoyaniya [Development of control actions using artificial neural networks and modified state estimation]. In: Sovremennye napravleniya razvitiya sistem releinoi zashchity i avtomatiki energosistem. 2015: tr. 5-i Mezhdunar. nauch.-tekh. konf. [Proc. of 5th Conf. «Modern trends in the development of relay protection systems and automation of power systems»]. Sochi, 2015. Available at: cigre.ru›acti­vity/conference…materials/S.2.1.pdf.
  5. Glazunova A.M., Kolosok I.N., S”emshchikov E.S. Obnaruzhenie nekorrektnykh dannykh pri upravlenii intellektual’noi energosistemoi metodami dinamicheskogo otsenivaniya sostoyaniya [Detection of incorrect data in the management of an intelligent power system by methods of dynamic state estimation]. Elektrichestvo, 2017, no. 2, pp. 18–27.
  6. Golub I.I., Xoxlov M.V. Algoritmy sinteza nablyudaemosti elektroenergeticheskix sistem na osnove sinxronizirovannych vektornych izmerenii [The algorithms of the synthesis of power systems observability based on phasor measurements]. Elektrichestvo, 2015, no. 1, pp. 26–33.
  7. Grunin O.M., Suvorov I.F., Pushkov K.A. Sovershenstvovanie modelei i metodov analiza ustanovivshichsya rezhimov elektricheskich sistem [Model and method development of steady-state regime analysis of power systems]. Elektrobezopasnost’, 2015, no. 2, pp. 17–21.
  8. Gurina L.A., Zorkal’cev V.I., Kolosok I.N., Korkina E.S., Mokryi I.V. Otsenivanie sostoya­niya elektroenergeticheskoi sistemy: algoritmy i primery resheniya linearizovannykh zadach [Power System State Estimation: algorithms and examples of linearized task calculations]. Irkutsk, 2016, 37 p.
  9. Dunaeva E.A. Programmno-technicheskie resheniya po obrabotke dannych registratorov SMPR [Software and hardware solutions for data processing from WAMS]. Innovacionnye nauchnye issledovaniya v sovremennom mire: teoriya, metodologiya, praktika [Proc. of 1th Conf. «Innovative scientific researches in the modern world: theory, methodology, practice»]. Ufa, 2019, pp. 81–87.
  10. Zhukov A., Kulikov Yu., Demchuk A., Maczkevich I. Sistema monitoringa perexodnych rezhimov [Wide-area measurement system]. Peredacha i raspredelenie, 2010, no. 2, pp. 52–57.
  11. Ivanov Yu.V., Cherepov A.S., Dubinin D.M. Sistemnyi analiz architektury postroeniya i svoistv komponentov sistemy monitoringa perechodnych rezhimov [The system analysis of architectural composition and component characteristics of wide-area measurement system]. Energiya edinoi seti, 2016, no. 3, pp. 62–70.
  12. Kolosok I.N., Aksaeva E.S., Glazunova A.M. Raschet maksimal’no dopustimych peretokov v kontroliruemych secheniyach na osnove metodov ocenivaniya sostoyaniya [The maximum allowed power flow calculations for interchanges based on state estimation methods]. Vestnik Irkutskogo gosudarstvennogo technicheskogo universiteta, 2018, vol. 22, no. 3(134), pp. 145–153.
  13. Kochneva E.S., Pazderin A.V. Vychislenie raschetnych otsenok s bolee nizkoi pog­resh­nost’yu po sravneniyu s izmereniyami [Calculation of estimation with lower error as against remote measurements]. Mashinostroenie. Energetika: sb. nauch. tr. [Materials Science. Mechanical engineering. Energy: Collected papers]. Ekaterinburg, Ural Fereral Univesity Publ., 2015, pp. 582–587.
  14. Kuzkina Ya.I. Obespechenie topologicheskoi nablyudaemosti EES na osnove sinchroni­zirovannych vektornych izmerenii [Topological observability control of a power system based on phasor measurements]. Sistemnye issledovaniya v energetike: sb. nauch. tr. [System researches for power engineering: Collected papers]. Irkutsk, 2015, pp. 14–20.
  15. Maksimenko D.M., Erohin P.M., Neujmin V.G., Shubin N.G. Ispol’zovanie optima­za­cionnykh metodov vnutrennei tochki dlya ocenivaniya sostoyaniya energosistem [Usage of Optimisation Interior Point Methods for Power System State Estimation]. Izvestiya NTC Edinoi energeticheskoi sistemy, 2012, no. 1(66), pp. 39–46.
  16. Mixailenko V.S., Rybasova O.S., Kostyukova S.S. Perspektivy primeneniya ustroistv vektornoi registracii dlya optimizacii raboty elektricheskoi seti v rezhime real’nogo vremeni [Prospects for the use of vector registration devices to optimize the operation of the electrical network in real time]. Elektroenergetika glazami molodezhi: materialy VIII Mezhdunarodnoi nauchno-tekhni­cheskoi konferentsii [Proc of 8th Conf. « Power engineering as seen by the youths»]. Samara, Samara National Research University Publ., 2017, pp. 219–222.
  17. Chochlov M.V. K vyboru kriteriya optimal’nogo razmeshheniya PMU dlya zadachi ocenivaniya sostoyaniya EES [To the choice of the PMU optimum allocation criteria for a power system state estimation task]. In: Metodicheskie voprosy issledovaniya nadezhnosti bol’shich sistem energetiki: sb. nauch. tr. [The methodological aspects of large power system reliability researches: Collected papers]. Irkutsk, 2018, pp. 382–391.
  18. Chochlov M.V. Ocenivanie parametrov schemy zameshheniya linii elektroperedachi po dannym PMU v usloviyax sistematicheskich oshibok izmerenii [Estimation of power line equivalent circuit parameters by PMU data with regular telemetry errors]. In: Metodicheskie voprosy issledovaniya nadezhnosti bol’shich sistem energetiki: sb. nauch. tr. [The methodological aspects of large power system reliability researches: Collected papers]. Irkutsk, 2015, pp. 272–279.
  19. Bartolomey P.I., Semenenko S.I. Power Systems State Estimation Acceleration on the Bases of the Synchronized Phasor Measurements in the Power System Steady State Control Tasks. IEEE International Youth Scientific and Technical Conference Relay Protection and Automation (RPA)/ IEEE, 2018, pp. 1–10.
  20. Hurtgen M., Maun J.C. Advantages of power system state estimation using phasor measurement units. Proc. of 16th Power Systems Computation Conference, 2008, pp. 1–7.
  21. Ivanov I., Murzin A. Optimal filtering of synchronized current phasor measurements in a steady state. IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015, pp. 1362–1367.
  22. Kolosok I.N., Korkina E.S., Mahnitko A.E. Detection of systematic errors in PMU measurements by the power system state estimation methods. Proc. of 56th Sci. Conf. on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE, 2015, pp. 1–4.
  23. Korres G.N., Manousakis N.M. A state estimator including conventional and synchronized phasor measurements. Computers & Electrical Engineering, 2012, vol. 38, no. 2, pp. 294–305.
  24. Korres G.N., Manousakis N.M. State estimation and bad data processing for systems including PMU and SCADA measurements. Electric Power Systems Research, 2011, vol. 81, no. 7, pp. 1514–1524.
  25. Kovalenko P.Y., Berdin A.S. Defining the parameters of a power transmission line equivalent circuit on the basis of phasor measurements. Journal of Physics: Conference Series. IOP Publishing, 2017, vol. 870, no. 1, pp. 1–7.
  26. Shahriar M., Habiballah I., Hussein H. Optimization of phasor measurement unit (PMU) placement in supervisory control and data acquisition (SCADA)-based power system for better state-estimation performance. Energies, 2018, vol. 11, no. 3, p. 570.
  27. Vanfretti L. et al. A framework for estimation of power systems based on synchronized phasor measurement data. IEEE Power & Energy Society General Meeting. IEEE, 2009, pp. 1–6.
  28. Wang S. et al. Assessing Gaussian assumption of PMU measurement error using field data. IEEE Transactions on Power Delivery, 2017, vol. 33, no 6, pp. 3233–3236.
  29. Zhu J., Abur A. Bad data identification when using phasor measurements. IEEE Lausanne Power Tech. IEEE, 2007, pp. 1676–1681.

Download the full article