DOI: 10.47026/1810-1909-2025-2-112-123
УДК 621.311.001.57
ББК 31.27-05
Leonid A. SLAVUTSKII
Key words
electrical engineering systems, artificial neural networks, machine learning, signal processing, multidimensional data, tasks solving classification.
Abstract
The use of artificial neural networks and machine learning methods in electrical engineering and electric power industry is actively developing. There are reviews of individual applications, but a systematic classification of the tasks being solved is difficult. The traditional division into regression and classification algorithms is insufficient. The paper proposes a hierarchical classification of tasks solved using neural network algorithms in electrical engineering, taking into account the interconnections between them. The classification includes the following sections. Signal processing provides for analysis and signal processing of electrical engineering systems using artificial neural networks. Multidimensional data processing involves analysis and interpretation of multidimensional data typical of complex electrical engineering systems. Regression tasks are aimed at predicting continuous quantities, for example, signal approximation, forecasting electricity consumption. Classification tasks involve division of data into classes, for example, diagnostics and fault identification. The features of the application in the «real-time» mode and in the «delayed» processing mode are considered. Combined use of algorithms provides for application of hybrid approaches combining various neural network architectures and methods. Approaches based on artificial neural networks are particularly effective for tasks that allow «delayed» processing. Tasks requiring real-time solutions (for example, relay protection and automation) often need additional monitoring using other methods that ensure the necessary reliability.
References
- Andreev O.N., Slavutskiy A. L., Alekseev V.V. Strukturnyy analiz elektricheskikh signalov s periodicheskim ispol’zovaniyem mnogosloynogo perseptrona[Structural Analysis of Electrical Signals with Recurrent Use of a Multilayer Perceptron]. Russian Electrical Engineering, 2022, vol. 93, no. 8, pp. 529–532. DOI: 10.3103/S1068371222080028.
- Andreev O.N., Slavutskiy A.L., Ksenofontov S.I. Modelirovaniye i neyrosetevaya obrabotka signalov perekhodnykh protsessov v elektrotekhnicheskikh kompleksakh [Modeling and neural network signal processing transients processes in electrical engineering complexes]. Cheboksary, 2023, 212 p.
- Andriyanov A.I., Krasnov N.A. Neyrosetevaya sistema upravleniya nelineynoy dinamikoy neposredstvennogo ponizhayushchego preobrazovatelya napryazheniya [Neural network control system of nonlinear dynamics of buck converter]. Proceedings of higher educational institutions. Instrument engineering, 2013, vol. 56(12), pp. 33–38.
- Antonov V.I. Adaptivnyi strukturnyi analiz elektricheskikh signalov: teoriya i ee prilozheniya v intellektual’noi elektroenergetike [Adaptive structural analysis of electric signals: the theory and its applications in intellectual power engineering]. Cheboksary, Chuvash State University Publ., 2018, 334 p.
- Ivanov S.O., Nikandrov M.V., Slavutskii L.A. Neirosetevoe modelirovanie releinoi zashchity s vremennoi zaderzhkoi [Neural network modeling of relay protection with time delay]. Vestnik Chuvashskogo universiteta, 2022, no. 3, pp. 53–60. DOI: 10.47026/1810-1909-2022-3-53-60.
- Ivshin I.V., Aukhadeev A.E., Le K.T. O primenenii neironnykh setei v raschetakh ratsio-nal’nykh rezhimov raboty tyagovogo elektrooborudovaniya gorodskogo elektricheskogo transporta [Application of neural networks in rational modes calculations of traction electric equipment operation of urban electric transport]. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta, 2023, vol. 15, no. 1(57), pp. 106–116.
- Andreev O.N., Slavutskii L.A., Tutaev G.M. et al. Lokalizatsiya momenta nachala perekhodnogo protsessa neirosetevymi programmno-apparatnymi sredstvami [Transients initial stage localization by neural net software and hardware]. Elektrotekhnika, 2023, no. 8, pp. 20–24. DOI: 10.3103/s1068371223080023.
- Slavutskii A.L., Slavutskii L.A., Alekseev V.V. et al. Neirosetevoi algoritm vosstanovleniya v real’nom vremeni signala promyshlennoi chastoty pri nelineinykh iskazheniyakh [A neural-network algorithm for real-time recovery of an industrial-frequency signal upon nonlinear distortions]. Elektrotekhnika, 2021, no. 8, pp. 21–25.
- Omel’chenko E.Ya., Lymar’ A.B. Identifikatsiya parametrov skhemy zameshcheniya asinkhronnykh dvigatelei pri pomoshchi neironnykh setei [Identification of the parameters of an idution motor equipment circuit using neural networks]. Elektrotekhnicheskie i informatsionnye kompleksy isistemy, 2023, vol. 19, no. 4, pp. 31–44. DOI: 10.17122/1999-5458-2023-19-4-31-44.
- Myasnikov E.Yu, Antonov V.I., Soldatov a.v., Razumov R.V. Podtverzhdeniye konfiguratsii elektricheskoy seti po dannym teleizmereniy na osnove svertochnykh neyronnykh setey [Confirming of electrical network configurations based on television measurements based on convolutional neural networks]. Elektrotekhnika, 2024, no. 8, pp. 8–16. DOI 10.53891/00135860-2024-8-8-16.
- Soldatov A.A., Evdokimov Yu.K. Neirosetevoi metod kontrolya rezhimov raboty podstan tsionnykh informatsionno-izmeritel’nykh kompleksov ucheta elektroenergii [Neural network method of monitoring the operating modes of substation information-measuring systems for electricity metering]. Promyshlennye ASU i kontrollery, 2017, no. 11, pp. 35–49.
- Fedorov A.O., Petrov V.S., Ilyin A.A. Odnostoronneye volnovoye opredeleniye mesta povrezhdeniya na osnove svertochnoy neyronnoy seti [Single-end traveling wave fault location based on convolutional neural network]. Relay protection and automation, 2023, no. 3(52), pp. 48–53.
- Baker M., Fard A.Y., Althuwaini H. Real-Time AI-Based Anomaly Detection and Classification in Power Electronics Dominated Grids. IEEE Journal of Emerging and Selected Topics inIndustrial Electronics, 2023, vol. 4, no. 2, pp. 549–559, DOI: 10.1109/JESTIE.2022.3227005.
- Bashirov M., Akchurin D., Volkova O. Development and research of intelligent diagnostic system for equipment of electric power complexes. In: E3S Web Conf: III International Conference on Actual Problems of the Energy Complex: Mining, Production, Transmission, Processing and Environmental Protection (ICAPE2024), 2024, vol. 498, 01003. DOI: 10.1051/e3sconf/202449801003.
- Bhatnagar M., Yadav A., Swetapadma A. et al. LSTM-based low-impedance fault and high-impedance fault detection and classification. Electr Eng., DOI: 10.1007/s00202-024-02381-0.
- Bhattacharya B., Sinha А. Intelligent Fault Analysis in Electrical Power Grids. In: IEEE 29thInternational Conference on Tools with Artificial Intelligence (ICTAI), 2017, pp. 985–990. DOI: 10.1109/ICTAI.2017.00151.
- Bouktif S., Fiaz A., Ouni A. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies, 2018, vol. 11(7), 1636. DOI: 10.3390/en11071636.
- Bragantini A., Sumper A. Design and Evaluation of Low Voltage Neural Network-Based State Estimators in Scenarios With Minimal Measurement Infrastructure. IEEE Access, 2024, vol. 12, pp. 27180–27198, DOI: 10.1109/ACCESS.2024.3366337.
- Bychkov A., Slavutskii L., Slavutskaya E. Neural Network for Pulsed Ultrasonic Vibration Control of Electrical Equipment. In: Proc. of 2020 International Ural Conference on Electrical Power Engineering, UralCon 2020. Chelyabinsk, 2020, pp. 24–28. DOI: 10.1109/UralCon49858.2020.9216248.
- Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
- Dharmendra K., Moushmi K., Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013, vol. 4(1), pp. 81–90.
- Gaggero G.B., Caviglia R., Armellin A. et al. Detecting Cyberattacks on Electrical Storage Systems through Neural Network Based Anomaly Detection Algorithm, Sensors, 2022, vol. 22, 3933. DOI: 3390/s22103933.
- Gámez M.J. M., de la Torre R.J., López Monteagudo F.E. et al. Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning. Sustainability, 2022, vol. 14, 9113. DOI: 10.3390/su14159113.
- Guo M.F., Yang N.C., Chen W.F. Deep-Learning-Based Fault Classification Using Hilbert–Huang Transform and Convolutional Neural Network in Power Distribution Systems. IEEE Sensors Journal, 2019, 19, no. 16, pp. 6905–6913. DOI: 10.1109/JSEN.2019.2913006.
- Hallmann M., Pietracho R., Komarnicki P. Comparison of Artificial Intelligence and Machine Learning Methods Used in Electric Power System Operation. Energies, 2024, vol. 17(11), 2790. DOI: 3390/en17112790.
- Hao Zhu, Haoxuan Yu, Yang Liu. Deep neural network-based frequency cross-over amplifier design: a simulation study. Journal of Physics: Conference Series, 2025, vol. 2939, 012032. DOI: 10.1088/1742-6596/2939/1/012032.
- Ivanov S.O., Nikandrov M., Lariukhin A. Neuro Algorithm Accuracy Evaluation for the Anomalies Detecting in Overcurrent Protection Operation. In: Proceedings of 2021 International Ural Conference on Electrical Power Engineering, UralCon 2021, Magnitogorsk, 2021, pp. 116–120. DOI: 10.1109/UralCon52005.2021.9559614.
- Jin Y., Wu H., Zheng J. et al. Power Transformer Fault Diagnosis Based on Improved BP Neural Network. Electronics, 2023, vol. 12(16), 3526. DOI: 3390/electronics12163526.
- Kantardzic M. Data mining: concepts, models, methods, and algorithms. John Wiley &Sons, 2011, 550 p.
- Kanwal S., Jiriwibhakorn S. Advanced Fault Detection, Classification, and Localization in Transmission Lines: A Comparative Study of ANFIS, Neural Networks, and Hybrid Methods. IEEE Access, 2024, vol. 12, pp. 49017–49033. DOI: 10.1109/ACCESS.2024.3384761.
- Kulikov A., Loskutov A., Bezdushniy D. et al. Decision Tree Models and Machine Learning Algorithms in the Fault Recognition on Power Lines with Branches. Energies, 2023, vol. 16, 5563. DOI: 3390/en16145563.
- Kulikov A, Loskutov A, Bezdushniy D. Relay Protection and Automation Algorithms of Electrical Networks Based on Simulation and Machine Learning Methods. Energies, 2022, vol. 15(18), 6525. DOI: 3390/en15186525.
- Leena N., Shanmugasundaram R. Artificial Neural Network Controller for Improved Performance of Brushless DC Motor. In: (EPSCICON) Computation and Controls Signals Power on Conference, January 2014. DOI: 1109/EPSCICON.2014.6887513.
- Leonowicz Z., Jasinski M. Machine Learning and Data Mining Applications in Power Systems. Energies, 2022, vol. 15, DOI: 10.3390/en15051676.
- Noebels M., Preece R., Panteli M.A. Machine learning approach for real-time selection of preventive actions improving power network resilience. IET Gener. Transmiss. Distrib. 2022, vol. 16, no. 1, pp. 181–192.
- Omelchenko E., Lymar A. Development of a New System for the Asynchronous Motor Parameters Identification based on Neural Networks. In: 2023 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), 2023, pp. 72–79.
- Osowski S., Szmurlo R., Siwek K. et al. Neural Approaches to Short-Time Load Forecasting in Power Systems – A Comparative Study. Energies, 2022, vol. 15, 3265. DOI: 10.3390/en15093265.
- Pawlik P., Kania K., Przysucha B. Fault diagnosis of machines operating in variable conditions using artificial neural network not requiring training data from a faulty machine. Eksploatacja i Niezawodność – Maintenance and Reliability, 2023, vol. 25(3). DOI: 10.17531/ein/168109.
- Rahman A., Srikumar V., Smith A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Applied Energy, 2018, vol. 212, pp. 372–385. DOI: 10.1016/j.apenergy.2017.12.051.
- Rocha S.A., Mattos T.G., Cardoso R.T.N. et al. Applying Artificial Neural Networks and Nonlinear Optimization Techniques to Fault Location in Transmission Lines – Statistical Analysis. 2022, vol. 15, 4095. DOI: 10.3390/en15114095.
- Rozal Filho E.O., Tabora J.M., Tostes M.E. et al. Harmonic classifier for efficiency induction motors using ANN. Revista Contemporânea, 2023, vol. 3(10), pp. 17660–17678. DOI: 10.56083/RCV3N10-054.
- Saucedo-Dorantes J.J., Jaen-Cuellar A.Y., Perez-Cruz A. et al. Detection of Inter-Turn Short Circuits in Induction Motors under the Start-Up Transient by Means of an Empirical Wavelet Transform and Self-Organizing Map. Machines, 2023, 11(10), 958. DOI: 10.3390/machines11100958.
- Shuraiji A.L., Shneen S.W. Fuzzy Logic Control and PID Controller for Brushless Permanent Magnetic Direct Current Motor: A Comparative Study. Journal of Robotics and Control (JRC), 2022, vol. 3 (6), DOI: 10.18196/jrc.v3i6.15974 762.
- Singh V.K., Govindarasu M.A. Cyber-Physical Anomaly Detection for Wide-Area Protection Using Machine Learning. IEEE Transactions on Smart Grid, 2021, vol. 12, no. 4, pp. 3514–3526. DOI: 10.1109/TSG.2021.3066316.
- Skrobek D., Krzywanski J., Sosnowski M. et al. Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives. Energies, 2023, vol. 16, 3441. DOI: 3390/en16083441.
- Slavutskii L.A., Ivanova N.N. Using the simplest neural network as a tool for fault location in power lines. In: AIP Conference Proceedings, Moscow, 01/04/2020 – 02/04/2020. Moscow, 2022, 030006. DOI: 10.1063/5.0074926.
- Slavutskii L.A., Lazareva N.M., Portnov M.S. et al. Neural net without «deep learning»«: signal approximation by multilayer perceptron. In: 2nd International Conference on Computer Applications for Management and Sustainable Development of Production and Industry (CMSD-II-2022), 2023, 125640P. DOI: 10.1117/12.2669233.
- Yan Y., Chen K., Geng H. et al. A review on intelligent detection and classification of power quality disturbances: trends, methodologies, and prospects. Comput Model Eng Sci., 2023, vol. 137(2), pp. 1345–1379. DOI: 32604/cmes.2023.027252.
- Zayer W., Radhi A. Faults diagnosis in stator windings of high speed solid rotor induction motors using fuzzy neural network. International Journal of Power Electronics and Drive Systems (IJPEDS), 2021, vol. 12(1), pp. 597–611.
- Zhou H., Chen J., Ye M. et al. Transient Fault Signal Identification of AT Traction Network Based on Improved HHT and LSTM Neural Network Algorithm. Energies, 2023, vol. 16, 1163. DOI: 10.3390/en16031163.
Information about the authore
Leonid A. Slavutskii – Doctor of Physical and Mathematical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (lenya@slavutskii.ru; ORCID: https://orcid.org/0000-0001-6783-2985).
For citations
Slavutskii L.A. Neural network algorithms for electrical engineering systems: the tasks solving brief classification. Vestnik Chuvashskogo universiteta, 2025, no. 2, pp. 112–123. DOI: 10.47026/1810-1909-2025-2-112-123 (in Russian).
Download the full article