Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Поверинов Игорь Егорович

МИНОБРНАУКИ РОССИИ

Должность: Проректор по учефедеральное государственное бы джетное образовательное учреждение

Дата подписания: 26.04.2022 13:04:13 высшего образования

Уникальный программный ключ: «Чувашский государственный университет имени И.Н. Ульянова» 6d465b936eef331cede482bded6d12ab98216652f016465d53hValeab0de1h7 (ФГБОУ ВО «ЧГУ им. И.Н.Ульянова»)

Факультет машиностроительный Кафедра технологии машиностроения

УТВЕРЖДАЮ

Проректор по учебной работе

И.Е. Поверинов

13 annul 2022 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) «Компьютерное моделирование технологических процессов»

Научная специальность — 2.5.6. Технология машиностроения Форма обучения — очная Год начала освоения — 2022

СОСТАВИТЕЛЬ (СОСТАВИТЕЛИ):

Профессор кафедры технологии машиностроения, д.т.н.

А.С. Янюшкин

Профессор кафедры технологии машиностроения, д.т.н.

Д.В. Лобанов

ОБСУЖДЕНО:

На заседании кафедры технологии машиностроения 22 марта 2022 г., протокол № 7

Заведующий кафедрой

Д.В. Лобанов

СОГЛАСОВАНО:

Декан факультета

В.А. Гартфельдер

Начальник отдела подготовки и повышения квалификации научно-педагогических кадров

С.Б. Харитонова

1. Цель и задачи освоения учебной дисциплины.

Цель изучения дисциплины — формирование у аспирантов знаний и умений, позволяющих применять основные положения дисциплины «Компьютерное моделирование технологических процессов» о математических методах, моделях, алгоритмах и компьютерных программах для реализации целей и задач информационной системы, а также нормального функционирования комплекса технических средств.

Задачи дисциплины: получение общих сведений о математическом программном обеспечении в технических системах; получение знаний в области развития теории программирования, создания и сопровождения программных средств различного назначения.

2. Планируемые результаты освоения дисциплины (модуля).

В процессе освоения данной дисциплины обучающиеся формируют следующие результаты освоения дисциплины:

К7 — способность самостоятельно осуществлять научно-исследовательскую деятельность в области теории технологического обеспечения и повышения качества изделий машиностроения с наименьшей себестоимостью их выпуска; совершенствования существующих и создания новых технологических процессов и методов обработки, и сборки изделий машиностроения требуемого качества с минимальными затратами труда, материальных и энергетических ресурсов;

K8 – готовность к совершенствованию существующих и разработке новых методов обработки и сборки с целью повышения качества изделий машиностроения и снижения себестоимости их выпуска; к моделированию, оптимизации и управлению технологическими процессами, с целью повышения качества и долговечности изделий машиностроения.

К9 - способность и готовность к разработке научных и методологических основ и средств повышения производительности изготовления изделий машиностроения, управления технологическими процессами и технологической наследственностью в машиностроении, теоретически и экспериментально исследовать процессы и производства в машиностроении.

3. Структура и содержание учебной дисциплины (модуля).

3.1. Структура дисциплины (модуля).

$N_{\underline{0}}$	Наименование раздела дисциплины	Код	Формы
Π/Π		формируемой	текущего
		компетенции	контроля
1.	Математические основы моделирования и	K-7, K-8, K-9	устный опрос на
	программирования. Вычислительные машины,		практических
	системы и сети. Языки и системы		занятиях
	программирования. Технология разработки		
	программного обеспечения		
2.	Операционные системы. Методы хранения	K-7, K-8, K-9	устный опрос на
	данных и доступа к ним. Организация баз		практических
	данных и знаний. Защита данных и		занятиях
	программных систем.		

3.2. Объем дисциплины (модуля) и виды учебной работы.

№ п/ п	Темы занятий	Лекции	Практические занятия	Самостоятельн ая работа	Всего часов
	Семестр 4				
	Раздел 1. Математические основы моделирования и				
	программирования. Технология разработки				
	программного обеспечения	4	4	0	1.6
1	Тема 1. Математические основы моделирования и программирования.	4	4	8	16
2	Тема 2. Вычислительные машины, системы и сети.	2	2	6	10
3	Тема 3. Языки и системы программирования. Технология разработки программного обеспечения.	2	2	6	10
	Раздел 2. Операционные системы. Методы хранения				
	данных и доступа к ним. Организация баз данных и				
	знаний. Защита данных и программных систем.				
	Тема 4. Технология разработки программного	4	4	8	16
4	обеспечения и моделирование технологических				
	процессов				
5	Тема 5. Методы хранения данных и доступа к ним.	2	2	6	10
	Организация баз данных и знаний.	_	_		_
6	Тема 6. Защита данных и программных систем.	2	2	4	8
	Итого, час	16	16	40	72
Итого, з.е.			2		

Вид промежуточной аттестации: зачет в 4 семестре.

3.3. Темы занятий и краткое содержание.

Раздел 1. Математические основы моделирования и программирования. Технология разработки программного обеспечения

Тема 1. Математические основы моделирования и программирования.

Лекция 1. Алгоритмы. Автоматы.

- 1. Понятие моделирования.
- 2. Эквивалентность данных формальных моделей алгоритмов. Понятие об алгоритмической неразрешимости. Понятие сложности алгоритмов моделирования.
 - 3. Точные и приближенные комбинаторные алгоритмы моделирования.

Практическое занятие 1. База данных формальных моделей алгоритмов. Точные и приближенные комбинаторные алгоритмы моделирования.

Лекция 2. Виды процессов и управления ими в современных системах моделирования.

1. Режимы функционирования вычислительных систем, структура и функции операционных систем.

- 2. Виды процессов и управления ими в современных операционных системах моделирования технологических процессов.
- 3. Основные блоки и модули. Основные средства аппаратной поддержки функций операционных систем.

Практическое занятие 2. Многокритериальные задачи моделирования технологических процессов.

Тема 2. Вычислительные машины, системы и сети.

Лекция 3. Формальные языки и способы их описания.

- 1. Машины, обеспечивающие выполнение вычислений, управляемых потоком данных. Организация ввода-вывода, каналы и процессоры ввода-вывода, устройства сопряжения с объектами.
- 2. Классификация вычислительных систем по способу организации параллельной обработки. Многопроцессорные и многомашинные комплексы.
- 3. Методики моделирования. Методы сжатия информации. Машины, обеспечивающие выполнение вычислений, управляемых потоком данных.

Практическое занятие 3. Формальные языки и способы их описания. Основы моделирования технологических процессов.

Тема 3. Языки и системы моделирования и программирования. Технология разработки программного обеспечения.

Лекция 4. Языки и системы моделирования и программирования.

- 1. Языки программирования. Процедурные языки программирования Функциональные языки программирования.
- 2. Логическое моделирование и программирование.
- 3. Процедурные языки моделирования и программирования. Основные управляющие конструкции, структура программы.

Практическое занятие 4. Работа с экспериментальными данными: переменные и константы, типы данных (целочисленные, плавающие, символьные, типы диапазона и перечисления, указатели), структуры данных (массивы и записи).

Раздел 2. Операционные системы. Методы хранения данных и доступа к ним. Организация баз данных и знаний. Защита данных и программных систем.

Тема 4. Технология разработки программного обеспечения и моделирование технологических процессов.

Лекция 5. Структурное и визуальное компьютерное моделирование и программирование.

- 1. Системы программирования (СП). Пакеты прикладных программ (ППП). Технология разработки и сопровождения программ.
- 2. Пакеты прикладных программ (ППП).
- 3. Машинная графика. Средства поддержки машинной графики. Графические пакеты.

Практическое занятие 5. Технология разработки и сопровождения программ.

Лекция 6. Этапы разработки программ ЭВМ технологических процессов.

- 1. Модули, взаимодействие и структуры программ моделирования.
- 2. Отладка, тестирование, верификация и оценивание сложности программ. Методы спецификации программ моделирования технологических процессов.
- 3. Режимы функционирования вычислительных систем, структура и функции операционных систем.

Практическое занятие 6. Генерация тестов. Системы генерации тестов. Срезы программ и их применение при компьютерном моделировании технологических процессов.

Тема 5. Методы хранения данных и доступа к ним. Организация баз данных и знаний.

Лекция 7. Методы хранения данных и доступа к ним. Организация баз данных и знаний.

- 1. Концепция типа данных. Абстрактные типы данных. Объекты (основные свойства и отличительные признаки).
- 2. Основные структуры данных, алгоритмы обработки и поиска. Сравнительная характеристика методов хранения и поиска данных. понятия реляционной и объектной моделей данных.
- 3. Теоретические основы моделирования технологических процессов. Функциональные зависимости и нормализация отношений. Средства и их использование при проектировании базы данных (БД).

Практическое занятие 7. Методы хранения данных и доступа к ним. Организация баз данных и знаний.

Тема 6. Защита данных и программных систем.

Лекция 8. Аппаратные и программные методы защиты данных и программ. Защита данных и программ с помощью шифрования.

- 1. Аппаратные и программные методы защиты данных и программ.
- 2. Система безопасности и разграничения доступа к ресурсам в Windows NT. Файловая система NFTS и сервисы Windows NT используемые при компьтерном моделировании.
 - 3. Защита от несанкционированного копирования.

Практическое занятие 8. Настройка устанавливаемой программы на конкретный компьютер, настройка на конфигурацию оборудования при компьютерном моделировании моделирования технологических процессов.

4. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины (модуля).

Формы и виды контроля знаний аспирантов, предусмотренные по данной дисциплине: текущий контроль и промежуточная аттестация (зачет).

Критерии получения зачета по дисциплине:

- оценка «зачтено» ставится, если аспирант глубоко и прочно усвоил весь программный материал, исчерпывающе, последовательно, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок;
- твердо знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий;
- если аспирант освоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

Зачет считается не сданным, если аспирант не знает отдельных разделов программного материала, допускает существенные ошибки, с большими затруднениями выполняет, либо не может самостоятельно выполнить практические задания.

4.1. Примерный перечень вопросов к зачету

- 1. Понятие алгоритма и его уточнения.
- 2. Понятие сложности алгоритмов при моделировании технологических процессов.
- 3. Моделирование технологических процессов на ЭВМ.
- 4. Отношения и функции. Отношения частичного порядка.
- 5. Формальные языки и способы их описания.
- 6. Коды с исправлением ошибок. Методы сжатия информации.
- 7. Архитектура современных компьютеров.
- 8. Классификация вычислительных систем.
- 9. Назначение, архитектура и принципы построения информационно-вычислительных сетей моделирования.
- 10. Протоколы передачи данных.
- 11. Особенности архитектуры локальных сетей.
- 12. Языки программирования.
- 13. Распределенное программирование.
- 14. Параллельное программирование над общей памятью.
- 15. Параллельное программирование над распределенной памятью.
- 16. Пакеты прикладных программ.
- 17. Отладка, тестирование, верификация и оценивание сложности программ.
- 18. Методы спецификации программ моделирования.
- 19. Виды процессов и управления ими в современных операционных системах.
- 20. Параллельные процессы, схемы порождения и управления.
- 21. Управление доступом к данным.
- 22. Управление внешними устройствами.
- 23. Оптимизация многозадачной работы компьютеров.
- 24. Операционные средства управления сетями.
- 25. Удаленный доступ к ресурсам сети.
- 26. Концепция типа данных.
- 27. Основные структуры данных, алгоритмы обработки и поиска.
- 28. Основные понятия реляционной и объектной моделей данных.
- 29. Характеристика современных технологий базы данных.
- 30. Информационно-поисковые системы.
- 31. Методы представления знаний.
- 32. Экспертные системы.

- 33. Аппаратные и программные методы защиты данных и программ.
- 34. Защита от несанкционированного копирования.
- 35. Защита от разрушающих программных воздействий.
- 36. Защита информации в вычислительных сетях.

5. Учебно-методическое и информационное обеспечение учебной дисциплины (модуля).

5.1. Рекомендуемая основная литература.

No	Название
1.	Статистические методы математического моделирования, анализа и оптимизации
	технологических процессов. Учебное пособие. Пен Р.В., Пен. В.Р.Изд-во: Лань. 2021
	г. 308 c. https://www.chitai-gorod.ru/catalog/book/1256534/
2.	Математическое моделирование объектов и систем управления : учеб. пособие / Т.В.
	Пискажова, Т.В. Донцова, Г.Б. Даныкина. – Красноярск: Сиб. федер. Ун-т, 2020. –
	230 c. https://reader.lanbook.com/book/181557#3
3.	Стружкин, Н. П. Базы данных: проектирование/ Н. П. Стружкин, В. В. Годин. — М.:
	Издательство Юрайт, 2018. — 477 с. —ISBN 978-5-534-00229-4. — Режим доступа:
	www.biblio-online.ru/book/BF8DDE6E-054D-4BB4-A6FA-2E9898529E96.
4.	Лобанов Д.В., Янюшкин А.С. Технология инструментального обеспечения
	производства изделий из композиционных неметаллических материалов
	/Монография/. Старый Оскол: ТНТ, 2018. – 296 с. 15 экз.
5.	Носов Н.В. Компьютерные технологии, моделирование и автоматизированные
	системы в машиностроении: учебник / А.А. Черепашков, Н.В. Носов. – СПб. :
	Проспект Науки, 2018. – 592 с. 5 экз

5.2. Рекомендуемая дополнительная литература.

No	Название
1.	Фомичёв, В. М. Криптографические методы защиты информации в 2 ч. Часть 1.
	Математические аспекты / В. М. Фомичёв, Д. А. Мельников; под ред. В. М.
	Фомичёва. — М.: Издательство Юрайт, 2018. — 209 с. — ISBN 978-5-9916-7088-3.
	— Режим доступа: <u>www.biblio-online.ru/book/C0328DC2-2A46-4945-994F-</u>
	<u>04F661095B83</u> .
2.	Набатова, Д. С. Математические и инструментальные методы поддержки принятия
	решений / Д. С. Набатова. — М.: Издательство Юрайт, 2018. — 292 с. — ISBN 978-
	5-534-02699-3. — Режим доступа: <u>www.biblio-online.ru/book/0AB93023-5D55-4432-</u>
	B8F1-34FE55F7BE10.
3.	Бартоломей, П. И. Электроэнергетика: информационное обеспечение систем
	управления: учебное пособие для вузов / П. И. Бартоломей, В. А. Тащилин; под
	науч. ред. А. А. Суворова. — М.: Издательство Юрайт, 2018. — 109 с. — (Серия:
	Университеты России). — ISBN 978-5-9916-9915-0. — Режим доступа: <u>www.biblio-</u>
	online.ru/book/BD14C058-BE82-4A72-93F2-C8B29FDF2EE3.
4.	Северцев, Н. А. Исследование операций: принципы принятия решений и
	обеспечение безопасности / Н. А. Северцев, А. Н. Катулев; под ред. П. С.
	Краснощекова. — 2-е изд., пер. и доп. — М.: Издательство Юрайт, 2018. — 319 с. —
	ISBN 978-5-534-07581-6. — Режим доступа: <u>www.biblio-online.ru/book/81B52599-</u>
	3F74-4000-8611-98525768FCF9.
5.	Новиков, Ф. А. Символический искусственный интеллект: математические основы
	представления знаний / Ф. А. Новиков. — М.: Издательство Юрайт, 2018. — 278 с.

	—ISBN 978-5-534-00734-3. — Режим доступа: <u>www.biblio-online.ru/book/01E78622-</u>
	B773-43C9-A583-91B73B00F44D.
6.	Стружкин, Н. П. Базы данных: проектирование/ Н. П. Стружкин, В. В. Годин. — М.:
	Издательство Юрайт, 2018. — 477 с. —ISBN 978-5-534-00229-4. — Режим доступа:
	www.biblio-online.ru/book/BF8DDE6E-054D-4BB4-A6FA-2E9898529E96.
7.	Аверченков В.И. Основы математического моделирования технических систем:
	учебное пособие [Электронный ресурс] / В.И. Аверченков, В.П. Федоров, М.Л.
	Хейфец. – 3-е изд., стериотип. – М. : ФЛИНТА, 2016. – 271 с. 5 экз
8.	Маслов А.Р. Высокоэффективные технологии и оборудование современного
	машиностроительного производства: учебник / Маслов А.Р., Федоров С.В.,
	Схиртладзе А.Г. – Старый Оскол: ТНТ, 2018. – 332 с. 5 экз
9.	Маслов А.Р. Современные технологии обработки материалов: монография / Г.В.
	Боровский, С.Н. Григорьев, А.Р. Маслов. – М.: Машиностроение, 2015. – 304 с. 5 экз
10.	Маслов А.Р., Высокоэффективные технологии и оборудование современного
	машиностроительного производства: учеб. пособие / А.Р. Маслов, С.В. Федоров. –
	М.: МГТУ «СТАНКИН», 2015. – 271 с. 5 экз
11.	Маслов А.Р., Шатилов А.А. Справочник технолога-машиностроителя. В 2 т. / Под
	ред. А.С. Васильева, А.А. Кутина. 6-е изд., перераб. и доп.// М.: Инновационное
	машиностроение, 2018. – 818 с. (Т. 2, гл. 3 «Станочные приспособления» – С. 335-
	365). 2 экз

5.3. Программное обеспечение, профессиональные базы данных и информационные справочные системы, интернет-ресурсы.

№	Перечень программного обеспечения, профессиональных баз данных и		
	информационных справочных систем, интернет-ресурсов		
	Перечень программного обеспечения		
1.	Пакет офисных программ Microsoft Office		
2.	Операционная система Windows		
Перечень ЭБС			
1.	Научная библиотека ЧувГУ [Электронный ресурс]. – Режим доступа:		
	http://library.chuvsu.ru		
2.	Электронно-библиотечная система IPRBooks [Электронный ресурс]. – Режим		
	доступа: http://www.iprbookshop.ru		
3.			
	Режим доступа: https://www.urait.ru		
	Интернет-ресурсы		
1.	Единое окно к образовательным ресурсам [Электронный ресурс]. – Режим доступа:		
	http://window.edu.ru		
2.	Российская государственная библиотека [Электронный ресурс]. – Режим доступа:		
	http://www.rsl.ru		
3.	Российская национальная библиотека [Электронный ресурс]. – Режим доступа:		
	http://www.nlr.ru		
4.	Научная электронная библиотека «Киберленинка» [Электронный ресурс]. – Режим		
	доступа: http://cyberleninka.ru		
5.	Библиографическая и реферативная база данных «Scopus» [Электронный ресурс]. –		
	Режим доступа: www.scopus.com		
6.	Поисковая платформа «Web of Science» [Электронный ресурс]. – Режим доступа:		
	https://webofknowledge.com		
7.	Научная электронная библиотека eLIBRARY.RU. [Электронный ресурс]. – Режим		
	доступа: http://elibrary.ru/defaultx.asp		

6. Материально-техническое обеспечение дисциплины

Учебные аудитории для лекционных и практических занятий по дисциплине оснащены мультимедийным проектором и настенным экраном.

Учебные аудитории для самостоятельных занятий по дисциплине оснащены компьютерной техникой с возможностью подключения к сети Интернет и доступом к электронной информационно-образовательной среде ФГБОУ ВО «Чувашский государственный университет имени И.Н. Ульянова».

7. Средства адаптации преподавания дисциплины к потребностям лиц с ограниченными возможностями

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей, в том числе с применением электронного обучения и дистанционных технологий:

-для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации.

-для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации.

-для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

8. Методические рекомендации обучающимся

Самостоятельная работа определяется спецификой дисциплины и методикой ее преподавания, временем, предусмотренным учебным планом, а также ступенью обучения, на которой изучается дисциплина.

Для самостоятельной подготовки можно рекомендовать следующие источники: конспекты лекций и/или практических и лабораторных занятий, учебную литературу соответствующего профиля.

Преподаватель в начале чтения курса информирует обучающихся о формах, видах и содержании самостоятельной работы, разъясняет требования, предъявляемые к результатам самостоятельной работы, а также формы и методы контроля и критерии оценки.

Методические рекомендации по подготовке к зачету

Подготовка к зачету начинается с первого занятия по дисциплине, на котором обучающиеся получают предварительный перечень вопросов к зачёту и список рекомендуемой литературы, их ставят в известность относительно критериев выставления зачёта и специфике текущей и промежуточной аттестации. С самого начала желательно планомерно осваивать материал, руководствуясь перечнем вопросов к зачету и списком рекомендуемой литературы, а также путём самостоятельного конспектирования материалов занятий и результатов самостоятельного изучения учебных вопросов.

Темы, вынесенные на самостоятельное изучение, необходимо законспектировать. В конспекте кратко излагается основная сущность учебного материала, приводятся необходимые обоснования, табличные данные, схемы, эскизы, графики и т.п. Конспект целесообразно составлять целиком на тему. При этом имеется возможность всегда дополнять составленный конспект материалами из журналов, данных из Интернета и других источников. Таким образом, конспект становится сборником необходимых

материалов, куда аспирант вносит всё новое, что он изучил, узнал. Такие конспекты представляют, большую ценность при подготовке к занятиям.

Основные этапы самостоятельного изучения учебных вопросов:

- 1. Первичное ознакомление с материалом изучаемой темы по тексту учебника, картам, дополнительной литературе.
- 2. Выделение главного в изучаемом материале, составление обычных кратких записей.
- 3. Подбор к данному тексту опорных сигналов в виде отдельных слов, определённых знаков, графиков, рисунков.
- 4. Продумывание схематического способа кодирования знаний, использование различного шрифта и т.д.
 - 5. Составление опорного конспекта.